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Foreword

The frst two editions of this book had seven skillfully written chapters, organized in my mind
in three parts. Collectively, they aimed at giving the reader a coherent presentation of the the-
ory of vibrations and associated computational methods, in the context of structural analysis.
The frst part covered the analytical dynamics of discrete systems, and both undamped and
damped vibrations of multiple-degree-of-freedom systems. It also served as a good introduc-
tion to the second part, which consisted of two chapters. The frst one focused on the dynamics
of continuous systems and covered the subject of wave propagation in elastic media. It was
followed by a chapter which bridged this topic with the frst part of the book, by introducing
the novice to the concept of displacement methods for semi-discretizing continuous systems.
It also culminated with a brief and yet well-executed initiation to the fnite element method. All
this led to the third part of the book, which indulged into a concise and effective treatment of
classical numerical methods for the solution of vibration problems in both frequency and time
domains. Covering all of these topics in a unifed approach, making them interesting to both
students and practitioners, including occasional references to experimental settings wherever
appropriate, and delivering all this in less than 400 pages, was a daunting challenge that the
authors had brilliantly met. For this reason, the previous editions of this book have been my
favourite educational publication on this subject matter. I have used them to teach this topic at
the MS level, frst at the University of Colorado at Boulder, then at Stanford University.
So what can one expect from a third edition of this book?
In its third edition, the overall organization of this book and that of its chapters has remained

mostly unchanged. However, several enhancements have been made to its technical content.
The notion of the response of a system to a given input has been refned throughout the text, and
its connections to the concepts of dynamic reduction and substructuring (which remain timely)
have been made easier to observe, follow, and understand. Chapter 3 has gained a new section
on experimental methods for modal analysis and some associated essentials in signal pro-
cessing and system identifcation. The mathematical content of Chapter 6 has been somehow
refreshed, and its scope has been enhanced by two welcome enrichments. The frst one is a new
section on linear equation solvers with particular emphasis on singular systems. Such systems
arise not only in many mechanical and aerospace engineering problems where the structure of
interest is only partially restrained or even unrestrained, but also as artifacts of many modern
computational methods for structural analysis and structural dynamics. The second enrichment



xiv Foreword

brought to Chapter 6 is an updated section on the analysis of the sensitivity of frequencies and
mode shapes to parameters of interest, and its association with model updating. Most impor-
tantly, the third edition comes now with carefully designed problem sets (and occasionally
some solutions) that will certainly enhance both processes of teaching and learning. Overall,
the third edition has added about 150 pages of technical content that make it a better textbook
for students and teachers, a useful reference for practitioners, and a source of inspiration for
researchers.

Charbel Farhat
Stanford University

1 January 2014



Preface

This monograph results from a complete recasting of a book on Mechanical Vibrations,
initially written in French and published by Masson Éditions in 1992 under the title Théorie
des vibrations, Application à la dynamique des structures. The frst edition in English was
issued shortly after, thanks to the support of DIST (French Ministry of Scientifc Research
and Space) and published by John Wiley & Sons in 1994. The book was indubitably felt
to fll a gap since both editions were a success in France as well as internationally, so that
both versions were almost immediately followed by a second edition by the same publishers:
in French in 1996, and in 1997 for the English version. Due to the short delay between
editions, only minor changes – essentially corrections – took place between the frst and
second versions of the manuscript.
The numerous constructive comments received from readers – university colleagues, stu-

dents and practising engineers – during the following decade convinced both of us that a deep
revision of the original manuscript was defnitely needed to meet their expectations. Of course
there were still remaining errors to be corrected – and the very last one will never be discov-
ered, error-making being a common trait of human beings – and more rigor and accuracy had
to be brought here and there in the presentation and discussion of the concepts. But the subject
of mechanical vibration has also rapidly evolved, rendering the necessity of the addition of
some new important topics. Proposed exercises to help, on the one hand, teachers explain the
quintessence of dynamics and, on the other hand, students to assimilate the concepts through
examples were also missing.
We were already planning to produce this third edition in French in the early 2000s, but

the project could never be achieved due to overwhelming professional duties for both of us.
The necessary time could fnally be secured from 2010 (partly due to the retirement of the
frst author). However, priority has now been given to the English language for the writing of
this third, entirely new edition since our perception was that the demand for a new, enhanced
version comes essentially from the international market. We are indebted to Éditions Dunod
for having agreed to release the rights accordingly.
We are thus pleased to present to our former readers a new edition which we hope will meet

most of their expectations, and to offer our new readers a book that allows them to discover
or improve their knowledge of the fascinating world of mechanical vibration and structural
dynamics.



xvi Preface

Without naming them explicitly, we express our gratitude to all those who have helped us
to make this book a reality. Indeed, we received from many colleagues, friends and relatives
much support, which could take various forms, such as a careful and critical reading of some
parts, the provision of some examples and fgures, appropriate advice whenever needed, per-
sonal support and, not the least, the understanding of our loved ones when stealing from them
precious time to lead such a project to its very end.

Michel Géradin and Daniel J. Rixen
München

24 January 2014



Introduction

We owe to Lord Rayleigh the formulation of the principles relative to the theory of vibration
such as they are applied and taught nowadays. In his remarkable treatise entitled Theory
of Sound and published in 1877 he introduced the fundamental concept of oscillation of a
linear system about an equilibrium confguration and showed the existence of vibration eigen-
modes and eigenfrequencies for discrete as well as for continuous systems. His work remains
valuable in many ways, even though he was concerned with acoustics rather than with struc-
tural mechanics.
Because of their constant aim to minimize the weight of fying structures, the pioneers

of aeronautics were the frst structural designers who needed to get vibration and structural
dynamic problems under control. From the twenties onwards, aeronautical engineers had to
admit the importance of the mechanics of vibration for predicting the aeroelastic behaviour
of aircraft. Since then, the theory of vibration has become a signifcant subject in aeronautical
studies. During the next forty years, they had to limit the scope of their analysis and apply
methods that could be handled by the available computational means: the structural models
used were either analytical or resulted from a description of the structure in terms of a small
number of degrees of freedom by application of transfer or Rayleigh-Ritz techniques.
The appearance and the progressive popularization of computing hardware since 1960 have

led to a reconsideration of the entire feld of analysis methods for structural dynamics: the
traditional methods have been replaced by matrix ones arising from the discretization of vari-
ational expressions. In particular, the tremendous advances in the fnite element method for
setting up structural models gave rise to the development of new computational methods to
allow design engineers to cope with always increasing problem sizes.
Today, the elaboration of effcient computational models for the analysis of the dynamic

behaviour of structures has become a routine task. To give an example, Figure 1 illustrates the
computational prediction of the vibration modes of a stator section of an aircraft engine. The
fneness of the fnite element model has been adapted in this case for the needs of the associ-
ated stress analysis, the latter requiring a level of detail that is not really needed for a modal
analysis. The eigenmode represented is a 3-diameter mode exhibiting a global deformation of
the structure. What makes the modal analysis of such a structure very diffcult is the high level

Mechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition.
Michel Géradin and Daniel J. Rixen.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 1 Finite element model of a stator section of aircraft engine. Source: Reproduced with permis-
sion from Techspace Aero – SAFRAN Group.

of cyclic symmetry (resulting from the number of stator blades) which is responsible for the
appearance of a high number of nearly equal eigenvalues.
Development of computing, acquisition and sensing hardware has led to a similar revolution

in the feld of experimental techniques for identifcation of vibrational characteristics of struc-
tures. For more than thirty years, experimental modal analysis techniques have been developed
which are based either on force appropriation or on arbitrary excitation.
The methods for dynamic analysis, whether they are numerical or experimental, have now

taken an important place everywhere in engineering. If they were rapidly accepted in dis-
ciplines such as civil engineering, mechanical design, nuclear engineering and automotive
production where they are obviously needed, they have now become equally important in
the design of any manufactured good, from the micro-electromechanical device to the large
wind turbine.
From its origin in the early sixties, the aerospace department of the University of Liège

(Belgium) has specialized mainly in structural mechanics in its education programme. This
book results frommore than twenty years of lecturing on the theory of vibration to the students
of this branch. It is also based on experience gathered within the University of Liège’s Lab-
oratory for Aerospace Techniques in the development of computational algorithms designed
for the dynamic analysis of structures by the fnite element method and implemented in the
structural analysis code the team of the laboratory has developed since 1965, the SAMCEF™
software.1

The content of the book is based on the lecture notes developed over the years by the frst
author and later formatted and augmented by one of his former students (the second author).
This work refects the teaching and research experience of both authors. In addition to his
academic activity at the University of Liège, the frst author has also spent several years as
head of the European Laboratory for Safety Assessment at the Joint Research Centre in Ispra
(Italy). The second author has accumulated until 2012 lecturing and research experience at

1 From 1986, SAMCEF™ has been industrialized, maintained and distributed by SAMTECH SA, a spin-off company
of the University of Liège.
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the Delft Technical University (The Netherlands) and is currently pursuing his career at the
Technische Universität München (Germany). The book has been adopted internationally as
course reference in several universities.
Due to its very objective, the book has a slightly hybrid character: the concepts of vibra-

tion theory are presented mainly with the intention of applying them to dynamic analysis
of structures and signifcant attention is paid to the corresponding methods. Even though
the foundations of analytical mechanics are reviewed, a preliminary acquaintance with this
subject is necessary. A good knowledge of matrix algebra and theory of complex numbers,
calculus, structural mechanics and numerical analysis for linear systems is required. It is also
assumed that the reader is familiar with the theory of the single-degree-of-freedom oscillator.
However, the presentation of the fnite element method is deliberately made simple since its
study requires a course of its own. Finally, the very important felds of nonlinear vibration
and random vibration have been intentionally omitted in the present text since they are highly
specialized subjects.

What is new in this third edition?

Although the overall structure of the book, its organization into individual chapters and the
main topics addressed, remain unchanged, this new version is the result of important revision
work to achieve major improvements.
Regarding the theoretical content itself, the main changes with respect to the previous edition

are the following:

– The response of an either discrete or continuous system has been the object of deep
rethinking and turned out to be a thread towards the important concepts of dynamic
reduction and substructuring. The latter are explained and developed, starting from the
observation that the response of a part from the overall system is the result either from
an excitation of its support, or from the application of a set of loads at selected points
of the structure. Such duality can be exploited in at least two ways. On the one hand, it
allows a system description in terms of the classical concepts of mechanical impedance or
admittance. On the other hand, it naturally leads to the concept of dynamic substructuring
based on an expansion of the response in terms of the spectral content of the impedance
and admittance relationships.

– Experimental modal analysis is an essential ingredient in structural dynamics since it allows
to confrm by experiment the structural properties predicted through numerical modelling.
Therefore it was felt necessary to include in this new version of the book the essentials of
signal processing and identifcation techniques that allow us to extract the spectral proper-
ties of a linear structure from measured dynamic responses.

– In the same spirit, the concept of eigensolution sensitivity to physical parameters has been
further detailed since it is the basis for the development of appropriate numerical tools for
improving the numerical model of a real dynamic system.

– The considerable evolution of the size of the structural systems to be considered for eigen-
value extraction and transient dynamic analysis in the context of large engineering projects
had to be refected and addressed properly. Models reaching the size of several millions
of degrees of freedom (such as the one displayed on Figure 1) are now common prac-
tice. The effciency of the eigenvalue solvers (such as the Lanczos method) and implicit



4 Mechanical Vibrations: Theory and Application to Structural Dynamics

time integrators (based on the Newmark family) depends for one part on the tuning of the
algorithms themselves, but perhaps even more on the performance of the linear solvers that
are used at each solution step. Therefore it was felt necessary to cover in a deeper manner
the topic of linear solvers, introducing not only the principle of the algorithms but also their
implementation taking into account the sparse character of the large sets of equations gen-
erated by fnite element discretization. Much attention is also brought to the case of singular
systems since they frequently occur in the context of structural dynamics.

– The link that was made in the previous edition between vibration and wave propagation did
not allow the reader to easily grasp the physical nature of the wave propagation phenomena
that can occur in a continuous medium. The discussion of the fundamental cases of wave
propagation in solids (both in one-dimensional and three-dimensional media) has thus been
reviewed and better illustrated in order to improve the didactics of the presentation.

– The presentation of the fnite element method has still been limited to one-dimensional
structures (bars, beams) since the main objective of the book is not to go deeply into fnite
element technology. The chapter devoted to it has, however, been complemented with the
development of a beam element including the shear deformation. The motivation behind the
presentation was to show that, as is often the case, remaining within the strict context of the
variational principle of displacements leads to shortcomings which can easily be removed
through the use of mixed variational formulations.

– The stability and accuracy properties of the Newmark family of time integration algorithms
have been revisited, their rigorous discussion being achieved in terms of the invariants of
the amplifcation matrix. Also, it is shown that dissociating displacement interpolation and
expression of equilibrium allows us to imbed most integration schemes of the Newmark
family in the same formalism.

As a result, the original manuscript has been almost completely rewritten. The opportunity has
been taken to improve or clarify the presentation whenever necessary, including the quality of
the fgures.
A great effort has been achieved to adopt throughout the manuscript notations that are as

coherent and uniform as possible. Therefore a general list of notations and symbols is provided
after this introduction. However it was still necessary in many cases to depart locally from
these general conventions, and therefore to introduce in each chapter an additional list of local
defnitions that complements the general one.
Among the many constructive comments received regarding the previous editions, a

major defciency felt and reported by the users was the absence of exercises proposed to
the reader. A few solved exercises are now detailed at the end of each chapter, and both
teachers and students will certainly appreciate the fact that a number of selected problems
are also suggested. The numerical solution of some of them requires the use of a numerical
toolbox, in which case softwares such as MATLAB® or the Open Source ones OCTAVE®

and SCILAB® are appropriate. Some others involve cumbersome analytical developments
that are greatly facilitated by symbolic computation using software tools such as MAPLE® or
MATHEMATICA®.
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The content

The content of the book is organized as follows:
Chapter 1 is dedicated to analytical dynamics of discrete systems. Hamilton’s principle is

taken as a starting point: frst the equations of motion are found for one particle and then those
for a system of particles under kinematic constraints are derived. Considering the equations of
motion in the Lagrangian form, the structure of the inertia terms and the classifcation of the
forces are established. In the last two sections of the chapter, the less common case of impulsive
loading of systems is dealt with and the method of Lagrange multipliers is introduced.
Chapter 2 discusses the undamped vibrations of n-degree-of-freedom systems and begins

by introducing the concepts of equilibrium position and of equilibrium confguration cor-
responding to steady motion. After a review of the classical concepts of eigenmodes and
eigenfrequencies, some more specifc aspects are considered: the forced harmonic response is
developed and is shown to lead to the concepts of dynamic infuence coeffcient and mechani-
cal impedance. Themodal expansion technique is applied for calculating the dynamic response
to transient external loading. It is shown that limiting the points of load application leads to
the concept of reduced mechanical admittance. The case of systems excited through support
motion is discussed in depth and also examined from the point of view of dynamic substruc-
turing. Variational methods for characterizing the eigenvalues of a vibrating system are then
discussed. The solution of the motion equations of rotating systems is considered in a specifc
section at the end of the chapter, with the main objective to show the existence of instability
zones linked to the existence of gyroscopic forces.
Chapter 3 deals with the damped oscillations of n-degree-of-freedom systems. First, the

concept of lightly-damped systems and its equivalence to the modal damping assumption are
discussed. Then the principles of modal identifcation through appropriate excitation and the
characteristic phase-lag theory are outlined. The formulation of damped system equations in
state-space form is developed in order to provide a suitable mathematical model for describ-
ing systems with arbitrarily large damping. In the last section, a basic presentation is made
of the signal processing and identifcation techniques that are commonly used to best ft the
parameters of the mathematical model from experimental measurements.
In Chapter 4, the theory of vibration is extended to the analysis of continuous systems, tak-

ing as a starting point the variational principle operating on displacements. The chapter begins
by considering the case of three-dimensional continuous media: strain measure, stress–strain
relationships, variational formulation and equations of motion. The effects of the second-order
terms arising from the presence of an initial stress feld are investigated in detail. Then the con-
cepts of eigenmodes, eigenfrequencies and modal expansion are generalized to the continuous
case. It is also shown that the principle of reciprocity commonly described for structures under
steady loading can be generalized to dynamics. In a major part of the chapter, a quite exten-
sive study is made of some one-dimensional or two-dimensional continuous systems: the bar
in extension, the vibrating string, the bending of a beam without and with shear defection and
fnally the bending vibration of thin plates. Numerous examples of closed-form solutions are
given and particular attention is devoted to the effects resulting from the rotation of beams and,
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for systems in bending, from initial extension. Their respective properties as one-dimensional
wave guides are discussed. The last section provides an elementary presentation of wave prop-
agation phenomena in an elastic medium, with a derivation of the fundamental solutions and
a discussion of their physical meaning.
In Chapter 5, the approximation problem for continuous systems is investigated by means of

displacement methods. First, the Rayleigh–Ritz method is reviewed and then applied to some
classical problems such as the bar in extension, and the bending of a beam and of a thin plate.
The case of prestressed structures is once more considered. The second part of the chapter is
dedicated to an introduction to the fnite element method, the principles of which are illustrated
by several simple examples. The chapter ends with the more complex but instructive case of
fnite element modelling of the beam with shear deformation.
Chapter 6 deals with solution methods for the eigenvalue problem. After an introduction

where a classifcation of the existing methods is suggested, a successive survey of the most
classical methods is made and their related numerical aspects are discussed. The methods eff-
ciently implemented in structural computation codes are pointed out, namely the subspace
method and the Lanczos algorithm. A signifcant part of the chapter is devoted to the effcient
solution of large, sparse linear systems since they form in fact the kernel of eigenvolvers based
on inverse iteration such as Lanczos and subspace iteration. The particular case of singular
structures is discussed in depth since frequently occurring in the context of structural dynam-
ics. The methods of dynamic reduction and substructuring already introduced in Chapter 2 are
discussed again, with three objectives in mind: to review the principle of dynamic reduction
in a more general manner, to show that dual points of view can be adopted, depending upon
the physical nature (displacement or force) of the primary variables and to propose dynamic
reduction and substructuring as a practical approach for the solution of large problems of struc-
tural dynamics. A section is also devoted to the computation of error bounds to eigenvalues.
The last section deals with the concept of eigensolution sensitivity to structural modifcations.
Chapter 7 outlines some aspects of direct methods for integrating the transient dynamic

response. After having introduced the concepts of stability and accuracy for an integration
operator, it discusses the one-step formulas of Newmark’s family. Their properties are analyzed
as well as those of variants commonly used in structural analysis: the Hilber-Hugues-Taylor
�-method and the Generalized-� variant which provides a neat way to introduce numerical
damping in the model and the central difference integration scheme especially well adapted
to impact problems. Eventually, there is a short discussion of the time integration of nonlin-
ear systems.

The scope

The book has been devised to be used by senior undergraduate and graduate students.
Therefore, the associated concepts are revealed by numerous simple examples. Nevertheless,
although the text is primarily aimed at students, it is also dedicated to research and design
engineers who wish to improve their understanding and knowledge of the dynamic analysis
of structures. Solved exercises are also proposed to readers at the end of each chapter, and a
number of selected problems are provided to allow them to practice the concepts and assess
their assimilation. In order to simplify the presentation, most examples and solved exercises
are presented in a nondimensional manner.
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Finally, the authors do not claim to cover within the following text the feld of vibration
theory and dynamic analysis in an exhaustive way. Neither have they made explicit refer-
ence to all the bibliographic work they have consulted throughout their writing. Therefore the
following list of references is suggested for further details on the various aspects of struc-
tural dynamics.
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Dowell E, Clark R, Cox D, Curtiss H, Edwards J, Hall K, Peters D, Scanlan R, Simiu E and Sisto F 2004 A Modern

Course in Aeroelasticity (Fourth Revised and Enlarged Edition). Kluwer Academic Publishers.
Försching HW 1974 Grundlagen der Aeroelastik. Springer-Verlag, Berlin.
Fung Y 1955 An Introduction to the Theory of Aeroelasticity. John Wiley & Sons, Ltd, Chichester.
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Sons, Ltd, Chichester.
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List of main symbols and defnitions

The list below provides the defnitions of variables and quantities that are common to all book
chapters. A separate list is provided at the beginning of each chapter with defnitions that
remain local to the chapter.2

In the text, we will use bold characters to denote matrices. Lower case bold symbols will
represent uni-column matrices whereas upper case ones denote multi-column matrices. For
instance,

a =
⎡⎢⎢⎢⎣

a1
a2
⋮

⎤⎥⎥⎥⎦
2 Multiple use of same symbol has been avoided as much as possible, but may still occur locally.




